Constancy of the internal environment is maintained by effectors that act to compensate for the change that served as the stimulus for their activation; in short, by negative feedback loops. A thermostat, for example, maintains a constant temperature by increasing heat production when it is cold and decreasing heat production when it is warm. The opposite occurs during positive feedback—in this case, the action of effectors amplifies those changes that stimulated the effectors. A thermostat that works by positive feedback, for example, would increase heat production in response to a rise in temperature.
It is clear that homeostasis must ultimately be maintained by negative rather than by positive feedback mechanisms. The effectiveness of some negative feedback loops, however, is increased by positive feedback mechanisms that amplify the actions of a negative feedback response. Blood clotting, for example, occurs as a result of a sequential activation of clotting factors; the activation of one clotting factor results in activation of many in a positive feedback cascade. In this way, a single change is amplified to produce a blood clot. Formation of the clot, however, can prevent further loss of blood, and thus represents the completion of a negative feedback loop that restores homeostasis.
Комментариев нет:
Отправить комментарий